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A noniterative method, first communicated by Marriott, for solving the integro-
differential equations which arise in electron-atom scattering theory, is developed for a
general class of noniocal potentials for both coupled and uncoupled equations. Al-
gorithms are given for the numerical solution in the uncoupled case using Simpson’s
rule for the quadrature scheme. As a sample calculation e~-He elastic scattering phase
shifts are calculated using the static-exchange approximation with a renormalized
density matrix, Hartree~Fock phase shifts are tabulated for He and Ne and compared
to previous calculations.

1. INTRODUCTION

When calculating the scattering properties of atomic systems it is often necessary
to solve integral equations of the type

u(x) = R(x) - fo N f: Ko(x, ¥) Z(p, 2) u(z) dy dz, (1)

where Ky(x, y) is a Green’s function of a second order differential operator and the
nonlocal potential 2’ has the form,
N

Z O‘n(y) ﬁ'n(z)a y <z,

n=1

2(y,20)=V(»)dy —2) + ) @
Y wdMvalz), v >z
n=1

A noniterative method, first communicated by Marriot [1], makes it possible to
build up u(x) by a few simple outward integrations. The method has been sucess-
fully applied to a variety of problems [1-4] using both the differential and integral
forms of Eq. (1). The purpose of this paper is to present in concise notation the
solution of Eq. (1) when 2" has the form in Eq. (2) along with efficient algorithms

* Present address, IBM Research Laboratory, San Jose, Ca., 95114.
348

Copyright © 1973 by Academic Press, Inc.
All rights of reproduction in any form reserved.



SCATTERING FROM NONLOCAL POTENTIALS 349

for its numerical evaluation. In Section 4 the solution is generalized to the case of
coupled equations. As a sample calculation the elastic scattering phase shifts for
the e—-He system are calculated in the static exchange approximation using both
the Hartree—Fock and the renormalized density matrix. HF phase shifts for Ne are
also presented.

2. FOrRMAL SOLUTION

Let R(x) and I(x) be solutions of
R(x) _
109 = © ®

which are regular and irregular, respectively, at the origin, and let Ky(x, y) be a
Green’s function for the second order differential operator H,, , i.e.,

H,,

Ho:oKO(x7 y) = 8(x - y) (4)
Then K, can be expressed as
_(RX)1(y), x <y,
Ko, ) = 3I(x) R, x> ©)

Since K, and 2’ are known functions the integration on y is done first in Eq. (1).
If the function K(x, y) is defined by

Kx,2) = | Kl 2) 2(3, 2) dy
then using Eqgs. (2) and (5) we obtain

K(x.2) = RO IE) VE) + 1) 3 @) [ RO) () dy

n=1

FRO) T B [ 1) a0
FRD) 3@ [ 1) N <)
— 16 RE) V) + 1) 3 Bule) [ RO )
HI0) 3, @) [ RO) )
R0 X 0@ [ I ) =) ©)

581/13/3-4
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If we define the auxiliary functions
1260 = [ RO) (1) dy,
1260 = [T 1) ) dy,
1269 = [ RG) paly) b,

1500 = [T 1) pal ) dy,

then Eq. (6) can be written as

K(x, z) = R(x)

Y B0 — RS (< 2)

= I(x)

n=1 n=1

+ Y n@UE L) RO (x> ).

K(x, z) now has the simple form

N

Y a(x) ba(2), x <z,
Kooz =
N
Y, ealx) dy(2), X >z,
if we define
ay(x) = R(x), N
bo(x) = I(x) V(x) + Y {Ba(X) [22(x) + va(x) f2(x)},
o) = I(x), "

N
dy(x) = R(x) V(x) + Z {Ba(x) fL1(X) — vau(x) 230},

a,(x) = 1(x) ful(x) — R(x) fo?(x),

bn(-x) - Bn(x)’ n#£0
C,,(X) = I(x)fns(-x) + R(x)fn4(x),

dn(x) = Vn(x)-

N N
I(z) V(z) + Z Bu(2) fa*(2) + Zl va(2) £*(2)

RDVE 4 S B i) — 3 wal) £il(2)

(7a)
(7b)
(7¢)

(7d)

®)

9

(10)
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Equation (1) has the form
u(x) = R() + | " K(x, 2) u(z) dz (11

0

and can be evaluated on a grid of points using Marriot’s method straightforwardly.

3. ALGORITHMS

In this section the details of Marriot’s method will be developed using Simpson’s
rule for the quadrature scheme along with efficient algorithms for programming
each step.

Referring to the kernel of Eq. (9) define the integral operator G by

Gu) = ¥ o) [ a0 dy = T ao [ buuo)d (12
Equation (11) then reads
(1= G)ux) = iOAna,xx) (13)
with
An= b+ [ b)) . (14)

The solution u(x) can be expressed as a linear combination of elementary solutions,
ie., if

(1 — G) un(x) = an(x), (]5)
then
N
u(x) = Y. Antin(x). (16)

The unknown constants 4, can be found algebraically from the solutions of
Eq. (15). That is, if

Bun = [ baly) unl») v, (a7
0

then
I— B)A = A, (18)

where A is the first column of the unit matrix I. Equation (18) is a standard problem
for which a program can be found in the IBM supplied Scientific Subroutine
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Package. The asymptotic form of u(x) for large x is also needed for the evaluation
of the scattering phase shifts. From Egs. (9) and (11) this can be seen to be

limu() = R + 3 i) | da() ) . (19)

n=0 0

When the functions V(x), B,.(x), and v,(x) are exponentially decaying, as they are
for scattering from neutral atoms, Eq. (19) becomes

iiﬁrg u(x) = R(x) + I(x)

[Famundy 310 | . @

The tangent of the phase shift will be proportional to the constant in Eq. (20),
ie.,

N
tand ~ Y F2Dundn, 20
n,m=0
where
(1 n=20
3 __ 2 )
B = faw),  nzo, (22)
and
Dy, = j dul(y) 4 ¥) d. 23)

The central problem then is building up the solutions of Eq. (15) by an outward
integration. First, the x-axis is divided into grids, as shown in Fig. 1, with the
increment, 4, of each grid being twice that of the previous grid. Letting
(k) = un(x; + k4,) on a given grid, then using Simpson’s rule Eq. (15) becomes

N
um(k) = am(k) + Z {Cn(k) Dnm(k - 2) - an(k) Bnm(k - 2)}

=0

AR enldatk — 2) unth — 2) + Atk — 1) unlk — 1}

— 43 i an(kfbulk — 2) un(k — 2) + 4bulk — D ua(k — 1)}, (24)

where

x;+kd

Bunk) = [ b0 un(0) (25)
= Bnm(k - 2) + Az/B{bn(k - 2)um(k - 2) + 4bn(k - l)um(k - 1) + bn(k)um(k)}

and D,.(k) is defined analogously.
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A, B,=2A, =28,
A ~ —Ar—

| R ‘ | { [ | |

l 4, I X*h, ' Xyl
X,=0 X X

Fic. 1. Grid structure for numerical solution of Eq. (15) using Simpson’s rule.

The functions a,, , b, , ¢, , and d, are calculated in a separate step and stored
sequentially in the order

.. ay(k) ay (k) ... aylk) co(k) ... cx(k) bo(k) ... by(k) dy(k) ... du(k) aglk + 1) ... .

Buffers are maintained for the functions a,, b,, ¢,, d,, 4,, B,., and D,
evaluated at three consecutive points.

All the data for the point k is stored in the first buffer, for the point ¥ — 1 in the
second buffer, and for the point k — 2 in the third buffer. Then to calculate the
functions u,,(x) on a given grid the following sequence of events takes place for
each point:

(1) The data from the second buffer is moved to the third buffer.

(2) The data from the first buffer (except for 4, and ¢,) is moved to the
second buffer.

3) a,,b,,c,,and d, for the new point are read into their portion of the
first buffer.

(4) Calculate the quantities,

S = i {enlk) dulk — 2) — an(k) ba(k — 2)},

(26)
T =} {cak) du(k — 1) — ag(k) ba(k — 1)}
(5) For all m calculate the new u,,’s with
Un(k) = an(k) + (4/3) Su,(k — 2) + (44/3) Tu,(k — 1)
+ Z {Cn(k) Dnm(k - 2) - an(k) Bnm(k - 2)} (27)

(6) For all m, n calculate the new B,,, and D,,’s using Eq. (25).
(7) Store the u,(k)’s on a sequential data set.
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When the last point of the grid has been processed, the buffers are initialized
for the next grid by moving the data from the third buffer into the second buffer.
Processing then begins with (1) above.

At the end of the last grid the B,,,, and D,,,’s in the first buffer provide the constants
of Egs. (17) and (23) to solve for the constants 4, and the phase shifts. The u,,’s
can then be read back one point at a time and the final solution u constructed.

Initializing the buffers for the first grid constitutes a special problem which must
be treated carefully, since errors made here are carried through the rest of the
calculations. u,,(0), B,,,(0), and D,,,(0) are zero and u,(1), B,,.(1), and D,,.(1) are
calculated using the trapezoid rule

Un(1) = an(l), (28a)

This, however, is not enough for initialization because the limits of b,,(x) u,,(x) and
d,(x) u,,(x) as x goes to zero are not always zero. Since they occur in Egs. (28b)
and (28c) and in Eqgs. (24) and (25) for the point & = 2, they must be evaluated
for each specific problem and read in. An interpolation scheme could be used here
to avoid having to consider these limits for each special case.

Once the limiting values are obtained, Egs. (28) are evaluated and stored in the
second buffer. Equations (24) and (25) are evaluated for the point & = 2 and stored
in the first buffer. Then processing begins with step (1) and continues until all grids
and points have been processed.

The step which constructs the functions a,, b, , ¢, , and d, is specialized for
the case o,(x) = v,(x), B.(x) = pu,(x) and assumes that the following data is
stored sequentially:

(k) ag(k) ... an(k) Bu(k) ... Bulk) V(k) I(k) R(K) ek + 1) ... (29)

Buffers are maintained which hold the above data as well as the functions .1, 1,2,
=3, and £, at three consecutive points. The function f,,* defined in Eq. (7d) diverges,
in general, as x goes to zero. Therefore, it is evaluated using the formula

50 = [T10) By — [ ) )

= fn*(o0) — [(k). (30)

Consequently, it is necessary to count through the points twice, once to construct
JaL 8 12, and f,.® and once to construct /.4, a,, , b, , ¢, , and d,, . The data (29) for
the points k = 1 and k = 3 for the first grid are for the points 4,/2 and 34,/2,
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respectively. This is so the functions f,, f,% f.% and f,® can be initialized with
Simpson’s rule. Therefore, to initialize for the first grid, the data of (29) is read in
for points k = 1, 2 and the f’s calculated by
f2(1) = (44/6){4R(1) a,(1) + R(2) an(2)},
S2(1) = (4,/6){41(1) an(1) + 1(2) an(2)},
L3 = (4,/6){4R(1) Bo(1) + R(2) Bu(2)},
f2(1) =0

and stored in the second buffer. Then the data for k = 3, 4 is read in and
[222) = (1) + (41/6){R(2) an(2) + 4R(3) r(3) + R(4) an(4)} (32)

is used with analogous expressions for f,%, £,3, and f,5, and they are stored in the
first buffer. The f’s are then calculated at the remaining points in a similar manner
to the B,,,’s of Eq. (25). At each point the functions £}, f,.2, /.., /.5 V, I, and R are
written on a sequential data set. The second pass reads this data back, one point
at a time, evaluates Egs. (10) and stores them for the u,, construction routine.

(3D

4. CourLED EQUATIONS

The method is also applicable to sets of coupled equations. The solutions can be
written analogously to those of Section 2 and will be presented here. However, the
programs of Section 3 have not been generalized and no sample calculation is given.

The equations to be solved are

NC o0 o0
u() = Rx) + 3 [ [ Kl ) Dl ) ia) dy d, (33)
=1
with the nonlocal potentials, and

Niiy
Z kalm(y) /Bklm(z)’ y <z,
m=1
2y, 2) = Vi p) 8y — 2) + N (34)
Z Witm( V) Virm(2), y >z

m=1

The integration on y gives

Niy
Z Apeim(X) brim(2), x <z,

m=0

fo " K%, ) Sy, 2) dy = (35)

Ngg
Y Com(X) dun(z), x>z
m=0
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The definitions of ay,,, , etc. are given by Egs. (7) and (10) when # is replaced by kim,
and R(x) and /(x) are replaced by R,(x) and I;(x), respectively, and V is replaced
with V.

Defining the integral operators Gy, by

Ngy [ Niy x
Guatx) = 3. an0) [ dan( D) ) dy = . auan) [ buanl yyu(z)dy - (36)
m=0 m=0 0
and the constants
A = S5m0 + fo bim(y) u(y) dy, 37)
Eq. (33) becomes
uy(x) = Z Gru(x) + Z Apim@rim(X), (38)
11 i,m
where the relation
alclO(x) = Rk(x)9 all 19 (39)

has been used.
Again , the solutions u;, can be expressed in terms of solutions of a set of
auxiliary equations

ufclm(x) = Z Giju;;:lm(x) + Sikaklm(x)' (40)

These solutions can be built up numerically in a manner analogous to that described
in Section 3. Multiplying both sides of Eq. (40) by A4;;,, and summing shows that
the u;’s can be expressed as

u(x) = Z Aklmuliclm(x)' 41)

k,l,m

Substituting (41) into (37) gives

Aim = Skl8m0 + Z Bklm;k’z'm’Ak’L’m' 3 (42)
L,

k m’
where

Bumwvw: = | buan(9) () . (43)

In matrix notation Eq. (42) is identical to Eq. (18)
1 —BJA = A, (44)
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where A and A are column vectors with the elements 4,;,, and 8,;0,, , respectively.
The dimensionality of the general problem is

Nc

Y (N + 8w, (45)

k,l=1
where N, is the number of coupled equations. However, symmetries in the 2;
may reduce this number. For example, if apn(xX) = gy (x) then ul;,, (%) = . (X)
and the dimensionality is reduced by one.

5. SAMPLE CALCULATION

As an example, the programs described in Section 3 have been used to calculate
the s, p, and d phase shifts for the elastic scattering of electrons from neutral He
atoms using a static-exchange approximation to the optical potential with a
renormalized density matrix. Since the differences between the phase shifts from
this approximation and the Hartree-Fock approximation represent a third order
correction to the phase shifts which have recently been calculated by
Yarlagadda er. al. [5] and Knowles and McDowell [6] it is of interest to have
accurate values for them.

The scattering functions will be solutions of the equation

(V24 k2 —2P)¥P(%) =0, (46)

where k2 is the energy in Rydbergs of the scattered electron and ¥V is defined by

@ = — 2w + 2 [ B2D ayw - [ AR wg) i @)

Vi

The density matrix p is expressed in terms of the natural orbitals R;; and occupation
numbers 7;; as

P, §) = Y naRalx) Ri(P) Yin(®) Yyl 9). (48)

ilm

The solution ¥(X) is expanded in spherical harmonics as

Yo=Y Y a )y, 9), (49)

=0 m=—1
and the radial equation for the u;’s is

(+1 ;
x2

+ ke —

o wlx) = 208 ulx) — 2 [* B D mO) . (50)
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where
plocal(x) — — é 12 r‘%()i_%da)’/
~2 @+ 0 )T ROy dy— [T R | 6D
and
S0 = Tl 0y o o mdmrior oy O
and (' } 2) is a Wigner 3 — j symbol.
This gives a nonlocal potential of the form of Eq. (2) with
V(y) = 2vioi(y), (53a)
3nlX) = a(X) = ) = 2920+ 1) ({ . 3)2 XMIR,(x),  (53b)
Bu(x) = pa(x) = Bin(x) = xRy(x). (53¢)
The Green’s function of Eq. (5) is defined by
R(x) = kxj(kx), (54a)
I(x) = —xykx), (54b)

where j, and y, are the spherical Bessel and Neumann functions, respectively,
whose asymptotic behavior is

lziﬁn; Jilz) = (1/2) sin(z — Imj2),

lim yi(z) = (1/2) cos(z — I/2). (33)
Equations (53) and (54) were used to prepare the data for the programs of
Section 3. The limiting values of b,(x) u,(x) and d,(x) u,(x) are all zero except for

2Z

A1 (56)

lj{)‘% bo(x) uy(x) =

where Z is the atomic number and / is the partial wave under consideration. With
the definition (54b) the tangent of the phase shift is given by

tan & = —(1/k) i F.2D A - (5T

n,m=0
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The density matrix of Eq. (48) is identical in form to the Hartree-Fock density
matrix of closed shell atoms. Therefore, to test the programs, the HF phase shifts
were calculated for Ne, and the results are compared to those of Thompson [7] in
Table 1. The occupied HF orbitals used were those of Clementi et al. [8]. The grid

TABLE I

Comparison of HF Phase Shifts for Electron Scattering
from Ne with Those of Thompson {7]

s-wave p-wave d-wave
k This work Thompson This work Thompson This work Thompson
0.001 3.1405 — 3.1416 — 0.00000 —
0.01 3.1309 — 3.1416 — 0.00000 —
0.1 3.0350 — 3.1404 —_ 0.00000 —
0.2 2.9280 2.931 3.1324 — 0.00006 —_
0.3 2.8205 2.824 3.1133 — 0.00038 —
0.4 2.7123 2716 3.0818 — 0.00143 —
0.5 2.6038 2.607 3.0393 3.040 0.00394 0.004
0.6 2.4956 — 2.9882 — 0.00870 —_—
0.7 2.3881 — 29314 2.933 0.01652 —
0.8 2.2821 — 2.8714 2.873 0.02804 —
0.9 2.1781 —_ 2.8102 2.812 0.04365 ——
1.0 2.0765 2.078 2.7495 2.751 0.06354 0.065
2.0 1.2354 — 2.2717 — 0.39898 —
3.0 0.6661 — 1.9977 — 0.65686 —
TABLE 11

Structure of Grid Points Used to Numerically Evaluate Eq. (50)

Increment No. of points Length of grid
0.78125 (—3) 40 0.03125
0.15625 (—2) 40 0.06250
0.3125(—2) 40 0.12500
0.6250 (—2) 40 0.25000
0.0125 40 0.50000
0.0250 40 1.0000
0.0500 40 2.0000
0.1000 80 8.0000

Totals 360 11.96875

Numbers in Parentheses are Powers of 10.
Columns 1 and 3 are in Units of Bohr Radii.
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was chosen in such a way that the first increment was small enough to insure the
accuracy of the trapezoid rule used for the first point in Eq. (28) and that Simpson’s
rule gave eight place accuracy on the integrals |, o R%(x)x? dx. The structure of this
grid is shown in Table II. By halving the increments and doubling the number of
points per grid, the phase shift was changed only in the sixth decimal place.
Therefore, it is felt that five place accuracy has been achieved. Extending the grid
out to 20a, gave no change in the eighth decimal.

For He the natural orbitals and occupation numbers of both Yarlagadda ez al. [5]
and Doll and Reinhardt [9] were used. Table III shows the comparison between
the s, p, and d phase shifts using the HF density matrix, the renormalized density
matrix and the accurate values which include polarization.

TABLE 1V
Time and Storage Requirements for Calculating Phase Shifts

No. of outward Ave. CPU time Core storage
Type of integrations per per phase requirements
phase shift phase shift shift (sec) (thousands of bytes)
He (Hartree—
Fock) s, p, & d 2 2.5 100
Ne (Hartree—
Fock) s, 3 5.2 100
p&d 4 7.6 100
He (natural
orbitals, Ref. [9])
s 10 20.3 100
p 15 39.5 120
d 17 43.8 120
He (natural
orbitals, Ref. [5])
s 15 41.3 120
14 24 88.4 140
d 28 93.6 140

All calculations were done on an IBM 370/155 computer. Table IV shows the
time and storage requirements. All routines operate under a control program
CON/360 written and kindly furnished by Nesbet [11]. CON/360 provides the [/O
routines which make the point by point processing of the sequential data sets
very efficient as well as a linking loader for dynamically overlaying unneeded
routines and various other services for efficient use of the users main storage area.
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