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A noniterative method, first communicated by Marriott, for solving the integro- 
differential equations which arise in electron-atom scattering theory, is developed for a 
general class of nonlocal potentials for both coupled and uncoupled equations. Al- 
gorithms are given for the numerical solution in the uncoupled case using Simpson’s 
rule for the quadrature scheme. As a sample calculation e--He elastic scattering phase 
shifts are calculated using the static-exchange approximation with a renormalized 
density matrix. Hartree-Fock phase shifts are tabulated for He and Ne and compared 
to previous calculations. 

1. INTR~DUCTI~N 

When calculating the scattering properties of atomic systems it is often necessary 
to solve integral equations of the type 

where K,(x, y) is a Green’s function of a second order differential operator and the 
nonlocal potential 2 has the form, 

.g %(V) hL(zh 4’ < z, 

Z(Y, z) = UY) %Y - 4 + (2) 

g1 h(Y) V&>> Jj > Z. 

A noniterative method, first communicated by Marriot [I], makes it possible to 
build up u(x) by a few simple outward integrations. The method has been sucess- 
fully applied to a variety of problems [l-4] using both the differential and integral 
forms of Eq. (1). The purpose of this paper is to present in concise notation the 
solution of Eq. (1) when L’ has the form in Eq. (2) along with efficient algorithms 
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SCATTERING FROM NONLOCAL POTENTIALS 349 

for its numerical evaluation. In Section 4 the solution is generalized to the case of 
coupled equations. As a sample calculation the elastic scattering phase shifts for 
the e--He system are calculated in the static exchange approximation using both 
the Hartree-Fock and the renormalized density matrix. HF phase shifts for Ne are 
also presented. 

2. FORMAL SOLUTION 

Let R(x) and Z(x) be solutions of 

H 
’ (3) 

which are regular and irregular, respectively, at the origin, and let K,(x, y) be a 
Green’s function for the second order differential operator HO, , i.e., 

fL~O(~~ Y) = 6(x - Y>. (4) 

Then K, can be expressed as 

m Z(Y), 
K”(xp y, = /Z(x) R(y), 

x < Y, 
x > y. (5) 

Since K, and 2 are known functions the integration on y is done first in Eq. (1). 
If the function K(x, y) is defined by 

m, 4 = jm Ko(x, Y) Z:(Y, 4 dY, 
0 

then using Eqs. (2) and (5) we obtain 

zqx, z) = R(x) Z(z) V(z) + 4x) 2 r&&(z) j; R(Y) %(Y) dY 
?l=l 

+ m g f%(z) jz Z(Y) %(Y) dY 
?I=1 3: 

+ w : vn(z> jm Z(Y) h(Y) dY (x < z> 
TX=1 z 

= Z(x) R(z) Liz> + 4-4 2 Adz) jz R(Y) %(Y> dY 
n-1 0 

+ Z(x) f bL(4 jz WY) ha(Y) dY 
n=1 z 

+ R(x) 5 Vn(Z) jm Z(Y) ha(Y) dY (x > z). (6) 
?a=1 z 

5W13/3-4 
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If we define the auxiliary functions 

.fnW = Jb” WY) %(Y) dY* 

fnY-4 = Jb’ I(Y) %(Y) dY, 

fn3(4 = jy NY) Pn(Y> dY3 

fn4(x) = 1% I(Y) Pn(Y) dY3 T 

6%) 

(7b) 

(7c) 

(74 

then Eq. (6) can be written as 

+ i %(Z)V(X).fn3(X) + W)Jn4W (x > z). (8) 
n=l 

K(x, z) now has the simple form 

j. 4dx) ha(z), 

K(x, z) = 

if we define 

x < 2, 

x > z, 

(9) 
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Equation (1) has the form 

U(X) = R(X) f joD KCX, Z) U(Z) dz (11) 

and can be evaluated on a grid of points using Marriot’s method straightforwardly. 

3. ALGORITHMS 

In this section the details of Marriot’s method will be developed using Simpson’s 
rule for the quadrature scheme along with efficient algorithms for programming 
each step. 

Referring to the kernel of Eq. (9) define the integral operator G by 

Equation (I 1) then reads 

(1 - G) U(X) = 5 A,a,(x) (13) 
r1=0 

with 

A, = ho + jm My) u(y) 4. 
0 

(14) 

The solution u(x) can be expressed as a linear combination of elementary solutions, 
i.e., if 

then 
(1 - G) u,(x) = a,(x), (15) 

u(x) = ; Anun( (16) 
?I=0 

The unknown constants A, can be found algebraically from the solutions of 
Eq. (15). That is, if 

B nm = s cc bn( Y) du) dy, (17) 
0 

then 
(I - B)A = A, (18) 

where A is the first column of the unit matrix I. Equation (18) is a standard problem 
for which a program can be found in the IBM supplied Scientific Subroutine 
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Package. The asymptotic form of U(X) for large x is also needed for the evaluation 
of the scattering phase shifts. From Eqs. (9) and (11) this can be seen to be 

i-2 u(x) = R(x) i- i c,(x) j = d,(y) u(y) dy. 
n-o 0 

(19) 

When the functions V(X), Pn( x , ) and v~(x) are exponentially decaying, as they are 
for scattering from neutral atoms, Eq. (19) becomes 

g+i u(x) = R(x) $ 

The tangent of the 
i.e., 

where 

and 

I(~) jm do(Y) dy) dy + f f2(4 j” dnty) u(y) dy . i (20) 
0 7l=l 0 1 

phase shift will be proportional to the constant in Eq. (20), 

tan 6 N 5 F,3Dnm& 3 W) 
II, m=o 

F7L” = 
1 
)n3(*,, 

n = 0, 

n #O, 
(22) 

D = nm s m 4~) U,(Y) 4. (23) 
0 

The central problem then is building up the solutions of Eq. (15) by an outward 
integration. First, the x-axis is divided into grids, as shown in Fig. 1, with the 
increment, Ai of each grid being twice that of the previous grid. Letting 
u,(k) = u,(x~ + kdi) on a given grid, then using Simpson’s rule Eq. (15) becomes 

+ Ai,’ : c,(k){d,dk - 2) u,(k - 2) + 4d,(k - 1) urn@ - 1)) 
7L=O 

- A,/3 f ~,(k)hdk - 2) %n(k - 2) + 46,(k - 1) u,(k - 1)}, (24) 
*=0 

where 

B,&) = jozi+- MY) tdv) & (25) 

= ~,,(k - 2) + Ai/3{b,(k - 2)u,(k - 2) + 4b,(’ - l)um(k - 1) + ‘,(k)‘,(k)) 

and D,,(k) is defined analogously. 
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FIG. 1. Grid structure for numerical solution of Eq. (15) using Simpson’s rule. 

The functions a, , b, , c, , and d, are calculated in a separate step and stored 
sequentially in the order 

. . . a,(k) a,(k) . . . a,(k) c,(k) . . . cN(k) b,,(k) . . . b,(k) d,(k) . . . d,(k) a,(k + 1) . . . . 

Buffers are maintained for the functions a,, b, , c, , d, , u, , B,, , and D,, 
evaluated at three consecutive points. 

All the data for the point k is stored in the first buffer, for the point k - 1 in the 
second buffer, and for the point k - 2 in the third buffer. Then to calculate the 
functions u,(x) on a given grid the following sequence of events takes place for 
each point: 

(1) The data from the second buffer is moved to the third buffer. 
(2) The data from the first buffer (except for a, and c,) is moved to the 

second buffer. 

(3) a,, b, , c, , and d, for the new point are read into their portion of the 
first buffer. 

(4) Calculate the quantities, 

S = i {c%(k) d,(k - 2) - a,(k) b,(k - 2)}, 
*=O 

(26) 

T = 5 (c,(k) d,(k - 1) - a,(k) b,(k - 1)). 
n=0 

(5) For all m calculate the new U,‘S with 

u,(k) = a,(k) + (A/3) Su,(k - 2) + (44/3) Tu,(k - 1) 

+ 5 {c,(k) D,,(k - ‘4 - a,(k) B,,(k - 2)). 
?I=” 

(27) 

(6) For all m, n calculate the new B,, and Dnm’s using Eq. (25). 
(7) Store the u,(k)‘s on a sequential data set. 
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When the last point of the grid has been processed, the buffers are initialized 
for the next grid by moving the data from the third buffer into the second buffer. 
Processing then begins with (I) above. 

At the end of the last grid the B,, and Dnm’s in the first buffer provide the constants 
of Eqs. (17) and (23) to solve for the constants A, and the phase shifts. The U,‘S 
can then be read back one point at a time and the final solution u constructed. 

Initializing the buffers for the first grid constitutes a special problem which must 
be treated carefully, since errors made here are carried through the rest of the 
calculations. u,(O), Brim(O), and D,,(O) are zero and u,(I), B&I), and D,,(I) are 
calculated using the trapezoid rule 

&n(l) = &?I(]>, (284 

&m(I) = W’~UL(~) do) + W) u,(l):, (28b) 

~?wL( I> = GwwL(O) GdO) + d,(l) &n( 1 )I. (28~) 

This, however, is not enough for initialization because the limits of b,(x) u,(x) and 
d,(x) U,(X) as x goes to zero are not always zero. Since they occur in Eqs. (28b) 
and (28~) and in Eqs. (24) and (25) for the point k = 2, they must be evaluated 
for each specific problem and read in. An interpolation scheme could be used here 
to avoid having to consider these limits for each special case. 

Once the limiting values are obtained, Eqs. (28) are evaluated and stored in the 
second buffer. Equations (24) and (25) are evaluated for the point k = 2 and stored 
in the first buffer. Then processing begins with step (I) and continues until all grids 
and points have been processed. 

The step which constructs the functions a, , 6, , c, , and d, is specialized for 
the case a,(x) = V,(X), /3,(x) = p,(x) and assumes that the following data is 
stored sequentially: 

c#) &I . . . 4k) P,(k) . . . ,4&k) V’(k) I(k) R(k) a,@ + 1) . . . . (29) 

Buffers are maintained which hold the above data as well as the functionsfnl, fn2, 
f” andfn4 at three consecutive points. The function,f,4 defined in Eq. (7d) diverges, 
ii ‘general, as x goes to zero. Therefore, it is evaluated using the formula 

fn4(k) = JAY I(Y) Ad Y) 4 - j-“+*” 0 v) MY) 4 Al 
= fn5( a> - .fn5(k). (30) 

Consequently, it is necessary to count through the points twice, once to construct 
fn', fn2, fn3, and fn5 and once to constructfn4, a, , b, , c, , and d,, . The data (29) for 
the points k = 1 and k = 3 for the first grid are for the points A,/2 and 34,/2, 



SCATTERING FROM NONLOCAL POTENTIALS 355 

respectively. This is so the functions fnl, fn2, fn3, and fn5 can be initialized with 
Simpson’s rule. Therefore, to initialize for the first grid, the data of (29) is read in 
for points k = 1, 2 and the f’s calculated by 

fnY1) = @,/6){4Nl) 41) + R(2) a,(2):, 
fn2(1> = (4,/6){4Z(1) 41) + Z(2) ~(2)), 
fn3(1> = @,/6)(4W) Is,(l) + R(2) Bn(2)), 

(31) 

and stored in the second buffer. Then the data for k = 3,4 is read in and 

.fnV) = fnY1) + @,/6NRC9 ~(2) + 4RC3) ~(3) + R(4) d4)) (32) 

is used with analogous expressions for fn2, fn3, and fn5, and they are stored in the 
first buffer. The-f’s are then calculated at the remaining points in a similar manner 
to the B,,‘s of Eq. (25). At each point the functions f,,l, fn2, fn3, fn5, V, Z, and R are 
written on a sequential data set. The second pass reads this data back, one point 
at a time, evaluates Eqs. (IO) and stores them for the u, construction routine. 

4. COUPLED EQUATIONS 

The method is also applicable to sets of coupled equations. The solutions can be 
written analogously to those of Section 2 and will be presented here. However, the 
programs of Section 3 have not been generalized and no sample calculation is given. 

The equations to be solved are 

udx) = UX) + 2 Irn j-” &(x, Y) &JY, 4 udz) dv & 
1=10 0 

with the nonlocal potentials, and 

The integration on y gives 

Y < z, 

y > z. 

x < z, 

x > z. 

(33) 

(34) 

(35) 



356 THOMAS 

The definitions of aklm , etc. are given by Eqs. (7) and (10) when n is replaced by klm, 
and R(x) and Z(X) are replaced by &(x) and Z,(x), respectively, and V is replaced 
with V,, . 

Defining the integral operators Gkz by 

Nkl G,&4 = c 
m=O 

and the constants 

A klm = 6kl%c0 + jm bkLm(Y) %(u) &, (37) 
0 

Eq. (33) becomes 

uk(x> = 1 GkPdX) + c -&&k&)~ 

where the relation 

alclO(x) = Rkh), all I, (39) 

has been used. 
Again , the solutions uk can be expressed in terms of solutions of a set of 

auxiliary equations 

These solutions can be built up numerically in a manner analogous to that described 
in Section 3. Multiplying both sides of Eq. (40) by Aklm and summing shows that 
the ui’s can be expressed as 

ui(x) = 1 &m&mW (41) 
k:,l,?N 

Substituting (41) into (37) gives 

A klm = sklsmO + c Bktm;k’rmTAkrcmf , 
k’,l’,m’ 

where 

(42) 

In matrix notation Eq. (42) is identical to Eq. (18) 

(I - B)A = A, (4) 
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where A and A are column vectors with the elements Aklm and 8kl&, , respectively. 
The dimensionality of the general problem is 

N = ; W,, + &A (45) 
k,l=l 

where N, is the number of coupled equations. However, symmetries in the 2,, 
may reduce this number. For example, if Q&X) = CW~,(X) then z&&x) = L&,~,(x) 
and the dimensionality is reduced by one. 

5. SAMPLE CALCULATION 

As an example, the programs described in Section 3 have been used to calculate 
the s, p, and d phase shifts for the elastic scattering of electrons from neutral He 
atoms using a static-exchange approximation to the optical potential with a 
renormalized density matrix. Since the differences between the phase shifts from 
this approximation and the Hartree-Fock approximation represent a third order 
correction to the phase shifts which have recently been calculated by 
Yarlagadda et. al. [5] and Knowles and McDowell [6] it is of interest to have 
accurate values for them. 

The scattering functions will be solutions of the equation 

(Vz + k2 - 2V) Y’(Z) = 0, (46) 

where k2 is the energy in Rydbergs of the scattered electron and V is defined by 

VU(~) = - ; Y(3) + 2 j / $c-;, d3y’ ‘y(Z) - j / !fJT, Y(y’)d”J. (47) 

The density matrix p is expressed in terms of the natural orbitals RiL and occupation 
numbers rliz as 

14% 3) = c rliz&z(x) R,*,(Y) YzmCQ) Yz%V. ilnl 
The solution Y(Z) is expanded in spherical harmonics as 

and the radial equation for the uL’s is 

-i?+kL ‘(‘+$) 1 uz(x) = 2VlOC~l (-4 u&4 - 2 jam G(x, v> 4.~) & 

(48) 

(49) 

(50) 
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where 

and 

THOMAS 

and ([ i t) is a Wigner 3 - j symbol. 
This gives a nonlocal potential of the form of Eq. (2) with 

V(y) = 2V’OC&‘(y), (534 

a,(x) = u,(x) = ai,, = -2~(21+ 1) (; ; ;)” xAflR&), (53b) 

/In(X) = p,(x) =: /LA(X) = x-A&(x). (53c) 

The Green’s function of Eq. (5) is defined by 

R(x) = kxj,(kx), (544 

4x) = --xYdW, (54b) 

where j, and yL are the spherical Bessel and Neumann functions, respectively, 
whose asymptotic behavior is 

!+2 j,(z) = (l/z) sin(z - 1~/2), 

pz Yl(Z) = (l/z) cos(z - /?-f/2). 
(55) 

Equations (53) and (54) were used to prepare the data for the programs of 
Section 3. The limiting values of b,(x) u,(x) and d,(x) u,(x) are all zero except for 

22 
l;ti b,(x) uo(x) = 21) 1 2 (56) 

where Z is the atomic number and I is the partial wave under consideration. With 
the definition (54b) the tangent of the phase shift is given by 

tan 6 = -(l/k) 5 Fn3D,,A,. 
?l,Wl=O 

(57) 
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The density matrix of Eq. (48) is identical in form to the Hartree-Fock density 
matrix of closed shell atoms. Therefore, to test the programs, the HF phase shifts 
were calculated for Ne, and the results are compared to those of Thompson [7] in 
Table 1. The occupied HF orbitals used were those of Clementi et al. [8]. The grid 

TABLE I 

Comparison of HF Phase Shifts for Electron Scattering 
from Ne with Those of Thompson [7] 

s-wave p-wave d-wave 
k This work Thompson This work Thompson This work Thompson 

0.001 3.1405 3.1416 O.OOOOO 
0.01 3.1309 - 3.1416 o.ooooo - 
0.1 3.0350 3.1404 - 0.00000 
0.2 2.9280 2.93 1 3.1324 0.00006 - 
0.3 2.8205 2.824 3.1133 - 0.00038 
0.4 2.7123 2.716 3.0818 0.00143 
0.5 2.6038 2.607 3.0393 3.040 0.00394 0.004 
0.6 2.4956 2.9882 0.00870 - 
0.7 2.3881 2.9314 2.933 0.01652 
0.8 2.2821 - 2.8714 2.873 0.02804 - 
0.9 2.1781 - 2.8102 2.812 0.04365 - 
1 .o 2.0765 2.078 2.7495 2.751 0.06354 0.065 
2.0 1.2354 2.2717 0.39898 - 
3.0 0.6661 I .9977 0.65686 

TABLE II 

Structure of Grid Points Used to Numerically Evaluate Eq. (50) 

Increment No. of points Length of grid 

0.78125 (-3) 40 0.03125 
0.15625 (-2) 40 0.06250 
0.3125 (-2) 40 0.12500 
0.6250 (-2) 40 0.25000 
0.0125 40 0.50000 
0.0250 40 1.0000 
0.0500 40 2.0000 
0.1000 80 8.0000 

Totals 360 11.96875 

Numbers in Parentheses are Powers of 10. 
Columns 1 and 3 are in Units of Bohr Radii. 
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was chosen in such a way that the first increment was small enough to insure the 
accuracy of the trapezoid rule used for the first point in Eq. (28) and that Simpson’s 
rule gave eight place accuracy on the integrals jy e&)~~ dx. The structure of this 
grid is shown in Table II. By halving the increments and doubling the number of 
points per grid, the phase shift was changed only in the sixth decimal place. 
Therefore, it is felt that five place accuracy has been achieved. Extending the grid 
out to 204, gave no change in the eighth decimal. 

For He the natural orbitals and occupation numbers of both Yarlagadda et af. [5] 
and Doll and Reinhardt [9] were used. Table III shows the comparison between 
the s, p, and d phase shifts using the HF density matrix, the renormalized density 
matrix and the accurate values which include polarization. 

TABLE IV 

Time and Storage Requirements for Calculating Phase Shifts 

Type of 
phase shift 

No. of outward Ave. CPU time 
integrations per per phase 

phase shift shift (set) 

Core storage 
requirements 

(thousands of bytes) 

He (Hartree- 
Fock) s,p, & d 

Ne (Hartree- 
Fock) s, 
p&d 

He (natural 
orbitals, Ref. 191) 
s 
P 
d 

He (natural 
orbitals, Ref. [5]) 
s 
P 
d 

2 

3 
4 

10 20.3 100 
15 39.5 120 
17 43.8 120 

15 41.3 120 
24 88.4 140 
28 93.6 140 

2.5 

5.2 
7.6 

100 

100 

100 

All calculations were done on an IBM 370/155 computer. Table IV shows the 
time and storage requirements. All routines operate under a control program 
CON/360 written and kindly furnished by Nesbet [I 11. CON/360 provides the I/O 
routines which make the point by point processing of the sequential data sets 
very efficient as well as a linking loader for dynamically overlaying unneeded 
routines and various other services for efficient use of the users main storage area. 
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